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ON SOME SHARP REGULARITY ESTIMATIONS OF L -SCALING
FUNCTIONS* ‘

KA-SING LAUt, MANG-FAI MAt; AND JIANRONG WANGH#

Abstract. Let f be a compactly supported L2-solution of the two-scale dilation equation and
a be the L2-Lipschitz exponent of f- We e _prove, in addition to other results, that there exists an.
integer k > 0 such that (i) 3 °‘|lnh.l f |f(z + k) — f(z)|?dz =~ p(h) as h — 0T, where p is
a nonzero bounded continuous function thh p(2h) = p(h), and (ii) for s > «, there exists a non- .
zero bounded continuous g (depends on s) with ¢(27T) = ¢(T") and W f jw® f f(w)|2dw ~

q(T) as T — 00. The above « and k can be calculated through a transition matrix. These improve
the previous result of Cohen and Daubechies concerning the Besov space containing f and Villemoes’s
result on the Sobolev exponent of f.
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1. Introduction. The existence, regularity, and orthogonality of the compactly

supported L2-solution (notation: L2-solution) of the two-scale dilation equation
t \

(1.1) f(z)= Z cnf (22 = n)

n=0
have been studied in great detail (e.g., [CD], [CH], [D] [DL1], [DL2] [E], [H], [LW1],
[V], [W]). In much of the literature, the techniques and emphases are on the frequency
domain, i.e., the consideration of the Fourier transformation of (1.1), '

fr=mo(3)1(3).

where mo(w) = 2 3" ¢, and f(w) = [ f(z)e"**dz. On the other hand, there
are linear algebraic methods on the time domain which also yield many important
results concerning continuous solutions ([DL1], [DL2], [CH], [W]) and LP-solutions
[LW1].

In this paper, we continue our study through the second method. For the L3-
case, the existence and regularity results in [CD] and [V] are largely derived from the
(2N — 1) x (2N — 1) matrix Wy associated with the operator A on functions in the
frequency domain defined by '

st =[ms (2)['0(3) + mo (§-+7) "5 (3+)
(which was introduced in [CR]). The matrix Wy actually comes out more naturally

in the time-domain consideration. For g € L?(R) supported in [0, N], if we let a(g)
denote the autocorrelation vector of a,(g) = [ g(z +n)g(z)dz, |n| < N, and Sg(x)

=0 ng(22 — 1), then o ‘
(1.2) | | a(Sg) = -;'WNa(g)
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. .(Proposition 3.1). This is the most basic and important relationship in the L2-
consideration. Note that if g is an L2-solution of (1.1), then Sg = g, and it follows
that a(g) is a 2-eigenvector of Wy. Villemoes [V] essentially proved that (1.1) has
an L2-solution if and only if W has a 2-eigenvector which is positive definite. Here
we will give another characterization of the existence of the L2-solution based on
Wy and two other associated matrices To and T used in [DL1], [DL2], [CH], (W],
and [LW1]. We also simplify a theorem of Cohen and Daubechies [CD, Thm. 4.3]
concerning the eigenvalues of W and the Riesz basis property.

Our main objective is to consider the regularity of the L2-solutions. Assuming

Sen=2,1et , ' :
| Ameax - max{|A| : X is an eigenvalue of W, and A|‘)\| # 2}
(W} is certain truncation of Wy to the positive coordina’bés) ai;& let
 a=—b(Am/2/@R2

then 0 < o < 1. In [V], Villemoes proved that if f is an LZ-solution of (1.1) and if
r < @, then [ _|w"f(w)|%dw < oo so that f is in the Sobolev space H™(R) forr < o, .
and the Sobolev exponent of f is a. By using the Littlewood-Paley method, Cohen
and Daubechies [CD] showed that f is in the Besov space By for all 7 < a (an
equivalent definition of Besov space By is supyso 77 [|Anfll2 < 00, where Anf =
f(- +h) = f(*) [P]). They left out the critical case when the exponent r = c. Here
we obtain some sharp estimations of the regularity of f and the decaying rate of f,
which improve the previous results. : A :
THEOREM 1.1. Let f be an L2-solution of (1.1). Let m be the highest order among
those eigenvalues A of Wi such that |A| = Amax; then - S

1 & 2

RZan A1 ‘/_oo |AwfI? = p(h) + o(h)

as h — O+, wh_ére p is a nonzero bounded continuous multiplicative periodic function

of period 2 (i.e., p(2h) = p(h),h > 0). (The order of an eigenvalue X is the power. of

the factor (z — M) in the minimal polynomial.) ' : Cet
If we define the L2-Lipschitz exponent of g € L?(R) by

L2-Lip(g) = inf{s : 0 < limsup -—1—||Ahg||2}, ‘
. h—o+ RS

then it follows from Theorem 1.1 that the L2-Lipschitz exponent of the L2-solution
f is a, which is also the Sobolev exponent of f for 0 < a <1. To study higher-order
regularity, the usual assumption is the l-sum rule, [ > 1. Here we do not need such a
hypothesis, we use the lth-order difference Ag) f to define the L2-Lipschitz order for -
0 < @ <1 (Amax has to be redefined). Theorem 1.1 can be extended accordingly with
the exception that when ¢ is an integer, then the logarithmic factor can be of order
m-—1orm—2. '

For the frequency domain, we have the following asymptotic result (including
higher-order ).

THEOREM 1.2. Under the above assumptions, for any s > «

1 T R
TH=a) (I T)F [-T | f(w)[2dw = q(T)
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as T — oo, where q is a nonzero bounded continuous function with ¢(2T) = q(T); if
o is not an integer, then k = m — 1; if « is an integer, thenk =m —1 orm — 2.

Theorem 1.1 corresponds to Theorem 5.4 later in the text. The main idea of
the proof is to extend the identity (1.2) to another autocorrelation vector ®(h) =
[®o(h), @1(R), - -, PN (h)], where ®,, is defined by

®,(h)= /_oo Apf(z + n)Ap f(z)dz,

and show that for any A-eigenvector u of W§, A # 0,2, (®(h),u) = h?p(h), where

= —In(A/2)/(2In2) and p is a nonzero bounded continuous multiplicative peri-
odic function (Lemma 5.1, Theorem 5.2). The most involved step is to show that
(®(h),u) # 0 (Lemma 4.3), which makes use of a classical result of L. Schwartz on
the mean periodic functions [Sch], [K], [RL]. Theorem 1.2 is contained in Theorem 5.7
and in §6, it is derived from Theorem 1.1 by using a new form of Tauberian theorem
proved in [L3].

We remark that equation (1.1) actually describes a certain self-similarity of f The
self-similar measures in fractal theory are also defined by the same class of functional
equation [Hu]. The genuine ideas of calculating the asymptotic properties in Theorems
1.1 and 1.2 are already contained in [L1], [LW2], [S1], [S2], and in particular in [L2].

The Daubechies four-coefficient scaling function D4 = f provides an interesting
example for the above theorems (see §6 and the appendix). It follows from a direct
calculation and Theorem 1.1 that Apax = %, o = 1, and the regularity is given by
'TlTﬁ'h— s |Anf[? = p(h) as h — O%. It is also differentiable a.e. [D], [DL2], but the

derivative is not in L?(R) in view of the asymptotic regularity behavior as h — 0t.

We organize the paper as follows. In §2, we introduce the transition matrix Wy
as well as the two associated matrices W and Wﬁ In §3, we consider some basic
properties of the transition matrices in connection with the autocorrelation functions.
For completeness, we simplify the existence characterization of the L2-solutions proved
in [LW1]. We also give a short proof of a theorem in [CD] concerning the eigenvalues
of W when the solution has the Riesz basis property (Theorem 3.7). In §4 we set up
the basic lemmas for the proof of Theorem 1.1, Lemma 4.3 being the most important.
one. Section 5 contains the proof of Theorems 1.1 and 1.2. Section 6 is concerned with
the higher—order difference and the L2 Lipschitz exponent o > 1. At the end, we also
~ include an appendlx which contains some graphic implementations of the ‘theorems
where the functional equation (1.1) takes only four coefficients. .

2. The trans1t10n matrices. For any sequence {cp} € o (Z), we let

= E CkCk—n, N EZ.
kezZ -

Then w, is the convolution of the two sequences {c,} and {c_,}; {wn} € £*(Z) and
Wen = wy. We define the infinite matrix W by

wl w._l LL)..3 Peae
W=(wiol=]| ... w wy w_ao ...[|,
‘ w3 w1 wW-1 ...
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and Wy is the restriction of W on the entries —N < 4,5 < N. We also define
| . ‘ wo | W_z2 ' Ww—q
w1 twoy woig+tw-z w-zt+w-s

wo +w_g wo + w_gq Wog+w_g ... ’

that is, each entry of W is given by

w+_{w_2j ifi=0,
4 wi—gj twii—n; ifi>0.

Geometrically, W+ 'is obtained by first deleting the left-half part of the columns of
W, then reflecting the upper half of this truncated matrix with respect to the zeroth
row and adding it to the lower ha.lf Similarly, we can truncate the matnx WN to

obtain W :
When there is no confusion, we use u to denote the column vectors [uo, ,'u,n] ,
[Umy ooy U0y vy Un]t and ... umy, U0, U, ..Jt ([t denotes the transpose). We define
F:CN+1 _, C2N+1 py S el
: un up U unNTt a1
‘ F(u):[7,...,?,U0,§—,...,T] ) U.GCN-'-I,
and G : C2N+1 _, CN+1 by
 G(u) = [ug,ug +ug,-..,uv +u_n]’, ue cA+, E

It is clear that the adjoints of F and G are given by
F*(u) = [uo, §(u1 FUg)yeens §(u_N + u_N)] , U€ C?fvfl’ e

and
G*(U) = [UN, ., U1, Ug, ui) ju'N]t7 ue€ CN+1 I
By a )\—elgenvector of a matrix M, we mean a right elgenvector correspondmg to
the eigenvalue . The basic eigen properties of Wy and W7, are related as follows.
. PROPOSITION 2.1. Ifu € CN*1 is a A-eigenvector of W"' (W), resp ), then
F(u) (G*(u), resp.) € C2N*1 45 a X-eigenvector of Wy ((WN)* resp.).

Conwversely, if u € C2N*1 45 g \-eigenvector of WN ((WN) , T€sp.), then G(u)

((F*)(u), resp.) is either 0 or a A-eigenvector of W (W), resp.).
Proof Using elementary linear algebra and the fact that Wn = W_n for all n € Z,

we have
(2.1) - WyoF=FoW}, and GoWy=W}oG.
Suppose u € CV+1 is a M-eigenvector of W3 ; then F(u) # 0 and by (2.1);
W (F(u)) = F(Whu) = F(u) = AF(u).
On the other hand, suppose u € C2¥+! is a nonzero A—eigeﬁvecéor of Wy; then

W(G(u)) = G(Wyu) = G(Au) = AG(u).
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The statements for the adjoints follow from the dual relationship of (2.1):
(2.2) *o (WN)* (WH)*oF* and (Wpy)*oG*=G*o (WH)*.

Remark. If u is a A-eigenvector of Wy, then the proposmon implies that v =
F(G(u)) and w = u—v are also eigenvectors of Wy provided that they are not zero.
~ Note that v is a symmetric and w is antisymmetric. If all the A—elgenvectors of WN
are antisymmetric, then A is not an eigenvalue of W} : :

Ife, =0foralln € Z\{0,1,...,N}, thenwn—Oforall |n|>N and

(wNA WN—-2 ... w_N+2 W_N 0 0 0 \ '
0 WN-1 .. WoN+3 W_N+1 0 0. 0
0 0 w1y woi . w—_3z ... 0: 0
Wy = 0 0 B wo W_g ... 0 0
0 0 w3 W 4 W1 0: 0.
0 .o 0 WN -1 WwWN-3 . .. w_N+1 0
\ 0 0 oo 0 _ wWN WN-2 ... W_-N42 w_N/

PROPOSITION 2.2. Suppose ».,Con = ), Cont1 = l-and ¢, = 0 for alln €
Z\{0,1,...,N}. Then 2 is an eigenvalue of the matrices Wy, Wy_1, and W}, the
vector[1,..., 1]t € C2N+L (or C2N-1) is g 2-eigenvector of Wy (Wi -1, respectwely)
and [1,2,...,2]* € CN*1 is a 2-eigenvector for W§;.

Proof. Note that the sum of each row of Wy is, 2. Hence 2 is an eigenvalue; the
corresponding eigenvector is [1,1,...,1]* and Proposition 2.1 implies that 2 is also an
eigenvalue of W, with eigenvector [1,2,...,2]%.

3. The autocorrelation function. Let L? denote the set of all L2-functions
with compact supports. We call the solution of (1.1) a scaling function. It is well
known that if f € L*(R), then suppf C [0, N]. For convenience, we assume that the
cn’s are real, where ¢, = 0 for all n € Z\ {0, 1,..., N}, so that the solution is also real.
Note that > ¢, = 2™, where m > 1 is a necessity condition for the existence of an L!-
solution f; if m > 1, then f is the (m — 1)th derivative of another L!-scaling function
corresponding to the coefficients {2~(™~¢,} [DL1]. We will assume, without loss of
generality, that ) ¢, = 2 throughout the paper.

For g : R — R, we define

(So)(z) = chg@x -n).

n=0

It is easy to show that if suppg C [0, N], then supp(Sg) C [0, N] also. . For each such
g, we let o . , :
an(g) - / oft+ n)g(t)dt nez,
—o0 )

be the nth autocorrelatlon of g defined on Z. It is clear that a,(g) = a_n(g) and
an(g) = 0 for all |n| > N. By slightly abusing notations, we use a(g) to denote the
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autocorrelation vectors of g: .

| a(g) = [ . aa’-—l(g)7 a0(9)7a1(g), . ‘]t or [a—k(g)v ver ,ao(g), teey ak(g)]t1

.depending on the situation. Let e, be the vector (finitely or infinitely many entries)

with 1 on the nth entry and 0 otherwise. The major property of the transition matrix

W defined in §2 is given in the following proposition. - -
PROPOSITION 3.1. Let g € L2(R) be supported in [0, N]. Then

sy a(Sg) = W'a(o),

where W* is the adjoint of W. In particular,

[ WSs) 0 Pde = (ale), Weo) = 5 (als), Wi-x o)

(> <]

Proof. The proof is based on the following observation: for n € Z,
. ‘ oo
n(S9) = [ (So)E+m)(Sa)(t)
-0

. oo
= cjci/ g2t +2n— g2t —i)dt
i,j€Z e .

- 1 - oo ) . . . ‘
=3 Z CjCi/ gt +2n+1i—7)g(t)dt
“,jEL e :

- %Z (Z Cici_(k—2n)> ak(g).

keZ \ieZ

1
=3 > wk-2nax(g)

k€Z

= HW*alg)

(the second equality holds since we assume that ¢, =0 for all n € Z\ {0,1,...,N}).
The last identity in the proposition holds due to the fact that an(g) = 0 for all
In| > N. : S

Remark. For y € R, if we let o (g) = [ 9t +n— y)g(t)dt, then the same
calculation yields

We will use this fact in Theorem 3.7. :

Recall that a sequence {un}3 _o is called positive definite if for any finite se-
quence {{,}, S Um—n€mn = 0. It is well known that the autocorrelation sequence
{an(9)} (letting an(g) = O for all |n| > N) is positive definite.

PROPOSITION 3.2. Suppose f is a nonzero L2-solution of (1.1); then a(f) is
o 2-eigenvector of (Wx_1)*, San(f) # 0, and {an(f)}nz-co is a positive-definite
sequence. ‘ . . o
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Proof. In view of Proposition 3.1 and the remark above, we need only show
that 3 an(f) # 0. This follows from the well-known Poisson formula Z an(f )e"‘“’ =
3 |f(w + 27n)|? and the sum is strictly positive for w = 0.

The existence of a vector satisfying the above conditions also 1mp11es the emstence
of an L2-solution of (1.1), which has been observed by Villemoes in [V] (where he uses
Y- an( f)e"’"” > 0 instead of using the fact that {a,(f)}°2_, is positive definite).

In order to construct the Lz-solutmn f of the dilation equation (1.1), we can
formally proceed as follows: - ta.ke a function g with suppg C [0,N] and consider
{S*(9)}2.,. If this sequence converges in L? to a function f, then f w111 be a solution
to (1.1). Equivalently, we can write

k-1

@2 Sk(g) g9+ 8(Sg~g)
=0

and consider the convergence of the series Zf:ol S'Z(Sg - g). Let

c 0 0 ... 0
c2 € Cy ... 0
To = [C2i—j—i]15i,j5N =|lec c3 ¢ ... 0 ,
0 0 O CN—1
C1 Co 0o ... 0
c3 C C1 ... » 0
- Ti=leaijhcijen =] ¢ ¢4 ¢ ... 0
0 0 0o ... CN /

These matrices were used in [DL1], [DL2], [CH], and [W] to study the continuous
scaling solutions. In [LW1, Thm. 4.3, the authors also use such matrices to give a
necessary and sufficient condition for the existence of the L?-solutions; for the L2-case,
the criterion is reduced to consider the eigenvalues of W. The proof is simplified later
in Theorem 3.4. First, we state a very useful lemma concerning T + T1 WhJCh is
proven in [LW1].
- LEMMA 3.3. Suppose. Zn—o ¢n = 2. Then the followmg hold:
(i) 2 is an eigenvalue of To + T;.
(ii) If v is a 2-eigenvector of Ty + T4, let g = Zn=—0 UnX[n—1,n); then

-3 N t ‘
[ Skg,...,/ .S'kg] =V.
, N-1 .

(111) For 1 < p < 00, let f € L”(R) be the LP- solutzon of (1. 1) and let v =

_ fo f,-. fN 1 f]t then v is a 2- -eigenvector of To + T1. For such v, if we let g be
defined as in (ii), then {S*(g)} converges back to f in the LP-norm.

THEOREM 3.4. Suppose Eﬁ;o cn =2. Letv be a 2-eigenvector of T0+T1'- and let

g= Zﬁ;ol vn‘xz{,‘,,'nﬂ). Let H, be the smallest invariant subspace of W n_1 containing
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the autocorrelation vector a(Sg—g). Then (1.1) has a nonzero LZ-solution if and only

if all the eigenvalues of WN 1 restriced to Hy have modulus less than 2.
Proof Let g = Sg g Note that by Proposmon 3.1, we have

st = /0 1S5 dt
' 1, . .
= 5r(a(d); Wiv_1€0)
1, .
= (5 (Wh_y)" a(3), o)
The assumptlon that (WN 1)* restricted on Hy has spectral radius less than 1
implies that {2 (Wl 1)*a(g)} converges to zero geometrically as | — oo; so does

{115*5]|?}. Consequently, S*(g) = g + S ¥~ §'§ converges in L%. Let f be the limit.
Then f € LZ(R); f # 0 because by Lemma 3.3(ii), . S .

Us’~, /S’"}-—O
[l ] Lo v

To prove the converse, we observe that (3.2) and Proposition 3.1 imply that

so that

-17(W’)*a(59 —g) =a(S'(Sg —g)) — 0 as | — oo.

It follows that all the eigenvalues of Wy _1 restricted to H, have modulus less than 2.
For the special case where 3 con = 3, C2n41 = 1, Theorem 3.4 yields a simple
critetion for the existence of the L2-solut10n (see also [CD Thm 3 3])- We need to
make use of the following simple facts ‘ :
LEMMA 3.5. Suppose Y., Con =D, C2n+1 = 1.
(i) Let v = [vg,v1,. -+, UN= 1]t and let g = En—o 'vnx{n n+1)- Then for ¢ any k E N
and for almost all z € [0,1),

N-1 N-1
Skg(z +n) = Un-
S S*gz+n) =) on

n=0 n=0

}Sru) Let H = {u € C?N-1: Zg_f(N _1) Un = 0}. Then (Wn-1)* is invariant
on

Proof The proofs of (i) and (ii) are quite similar. For (i), we make use of the fact.
that [1,.. ] is a left 1-eigenvector of To and Ty (see,e.g., [H]). To prove (ii), note
that [1 1 1]t is a 2-eigenvector of W1 (Proposition 2. 2) hence for u € H

.[1,-1,.._,-1](WN_1)*u=2[1,1,...,1]u=2 E Cup=0. . .o
) o ‘ n=—(N-—1) o
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This implies that the sum of the coordinates of (Wn—-1)*u is zero so that (Wy_;)*
is invariant on H.

COROLLARY 3 6. Suppose > cop = 202n+1 = 1. If the eigenvalues of (W _1)*
restricted on H have moduli less than 2, then (1.1) has an L2-solution.

Proof. Let v = [vg,v1,...,v5_1]° be a 2-eigenvector of To + T, as in Theorem
3.4. Then Lemma 3.5 implies that Zn—O g(z +n) = 0 for almost all z € [0,1). Since
suppg C [0, V], we actually have } " _ _ G(z +n) = 0 for almost all z € [0,1) and
hence for almost all z € R. Therefore,

T a@= Y 2@
Inl<N-1 n=—oo
- Z / (t+n)g(t)dt
N 1)
= /0 <Z g(t +_n)) g(t) dt
=0,

and a(g) € H. ThlS implies that the subspace H, in Theorem 3.4 is contalned in
H. By assumptlon, 5 L(Wn_ 1)* restricted on H has spectral radius less than 1, and
Theorem 3.4 applies.

In [LW1, Prop. 4.6}, it is proven that the converse of the above corollary is also
true if we assume that 2 is a simple eigenvalue of Wy_; and {W),_,e;} generates
C2N-1; for the four-coefficient case (N=3), the above additional assumptions are
a.lways true except for the case ¢y = c3 = 1. By using a long and rather complicated
argument Cohen and Daubechies [CD, Thm. 4.3] also showed that the converse is true
if f has the R:lesz—basm property In the followmg, we w111 gwe a short proof of thelr
theorem. o

- Recall that a functlon felL? (R) is sa.1d to satlsfy the Rzesz-baszs property if the
sequence of functions fn = f(- = n),n € Z forms a Riesz-basis for the closure of its
linear span in L?(R), i.e., there exist Cy,Co > 0 such that _

Yl I anfall? <€ 3 lanl?

Cohen [C], Lawton [La], and Villemoes [V] have given different criteria for such a
property in terms of the Fourier transformation. In particular, Villemoes showed that
if an L2-solutlon f has the Riesz-basis property, then 3" ¢z, = S cont1 = 1. Also,
assuming such a summing condition, f has the Riesz-basis property if and only 1f
Y- an(f)e™ is strictly positive.

. THEOREM 3.7. Suppose f is a solution of (1.1) and has the Rzesz—baszs property.
Then (W —1)* restricted on H has spectral radius less than 2. .

Proof. Since f has the Riesz-basis property, then ¢z, = Zc2n+1 =1 [V] so
that (Wy_1)* is invariant on H. All eigenvalues of (W _1)* have moduli less than
or equal to 2 (see Propositon 5.3 in §5). The proof will be complete if we show that
(W —1)* does not have another 2—e1genvector other than a(f), which is not in H.

Note that 3 a,(f)e™ = " |f(w + 27k)|2 > 0 by the Riesz-basis property. Sup-
pose u is another 2-eigenvector of (Wy_;)*. By letting u,, = 0 for all In| > N, uis
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a 2-eigenvector of W*. By Wiener’s theorem, there exists {rn}sx o € £' such that
) raem = ————-———qunemfd .
- " Z an(f)em
It follows that u = r * (a(f)) and

= lim %((w*)lu, en) |

= lim p (W a7, )

= lim 3 rk_a(z B(£), en) o (use (3.1)")
. Zrkzlggo A1), e

= Cf(a(f), en),

where C = 3", 7% This implies that u is a scalar multiple of a(f) and the proof is
complete.

Remark, The above discussion gives a simple criterion for computer to check forf
the Riesz-basis property of the solution f given {ca}_o with 3" con = Y Cont1-=
first show that the 2-eigenvalue of (Wy—_1)* is simple and all other eigenvalues are
less than 2 in modulus (this implies the existence of the solution by Corollary 3.6 and
3 an(f)e™ > 0 by Proposition 3.2), and then show that the polynomial 3 1 Z an(f)z"
has no root on the unit circle.

4 Some lemmas. In the rest of the paper, we will use the difference quotlent:
75E s [® - |ARf (£)|2dt to study the regularity properties of the scaling function f. We

prefer to use the matrix W rather than Wy because using the latter, we have to
discard those eigenvalues Whlch only give antisymmetric eigenvectors (see the remark
for Proposition 2.1 and Lemma 4.3). As before, we assume that Y- c, =2. Forh €R
and n € Z, we also define .

2(r) = /_ " Anf(t+m)ARf()dt.

Smce fis supported by [0, N] _ N N
(41) N o @a(h)=0 VO<h<l, |n|>N+1
We use @(h) to denote |
S [, Ba(h) . (R s [Bo(h) Ba(A)-- T
If necessary, we w111 add the superscript N or oo to <I>(h) to make the d1st1nct10n It

is clear that Ah f sat1sﬁes

(4.2) o Arf(@) = cabanf(2z —n).

n=0
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PROPOSITION 4.1. Let W be the transition matriz corresponding to the scaling
function f satisfying (1.1). Then for u = [uo,u1, Lun]t e CNHL,

(43) ‘ <4>(h>,u>——<4><2h),w+u> 0<h<%

Proof The proof is basically the same as that of Proposition 3.1, using (4 2)
instead of (1.1). For0<n <N,

Bn(h) = / A+ mAnf)de

= Z Cic; / Azhf(2t +2n — ])Azhf(zt — ‘l) dt

i,J€Z

[W*G*(2(2h))]n

N = DN =

[(W3)*((2))]..

LEMMA 4.2. Ifuisa 2-eigehvector or a 0-eigenvector of W}, then
| (B(h),u)=0 VO<h<Ll

Proof. Let u be a 2-eigenvector of W. We have, by (4.3), (8(%),u) = (®(h), ).
forall0 < h< 1 Hence, 1nduct1vely, '

w0~ (s (3) )< (3()

forall 0 < h <1, m > 0. But (®(5%),u) — 0 as m — oo, so it follows that
(<I>(h), u) =0 for all 0 < h < 1. The same conclusion also holds 1f uisa O-elgenvector
since in such a case Wiu = 0.

Our main lemma is the following.

LEMMA 4.3. If u is a A-eigenvector of Wi with A # 0 or 2, then

(®(h),u) #0  for some 0 < h < %
The proof of this lemma is rather long. The basic idea is to prove by contradiction.
Suppose otherwise, i.e., ¥(h) = (®(h),u) = 0 for all 0 < h < 2. We show that
when u is replaced by the corresponding A-eigenvector i1 for W+ (Lemma 4.4) and
the inner product in (h) is acting on all positive coordinates, then the identity
holds for all » € R. From this we deduce that the corresponding sequence {u,} is a
linear combination of certain exponential sequences of the form {e**"}. However the
eigenproperty of {u,} implies that this is impossible.
For this purpose, we first observe that for h € R,

&) = [ c: Anf(t+m)Anf(t) dt

= [ GG +nt B = s+ m)SE+ ) - FO)a
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Multiplying out the integrand and changing the variables, we obtain
(4'4) . ' (I)n(h) = zan(f) - ‘I’n(h)’

where

(k) = /’w [F(t+h —m) + £+ B+ m)lf(2) de

-0

and a,(f) is the nth autocorrelation. We let

TV (h) = [To(h), U1(R), ..., Un(R)]! and T™(h)= [mo(h),ix}l(h), i

Note that [ao(f), a1(f),---,an(f)] is a 2—eigenvectof of (W3)* (use Proposition 3.2
and (2.2)). It is orthogonal to any A-eigenvector u of WF; with A # 2. For such u,
(4.4) implies that

(45 (@Y (h),u) = —(TV(h),u), heER.

Let S be the class of all one-sided infinite sequences.
LEMMA 4.4. If u is a A-eigenvector of W3 with A # 0, then there exists i € S,
a A-eigenvector of W"’ such that @, = U, for all 0 < n < N. Furthermore, for such
ai, ' et '
1

(@ (h), &) = (¥V(h),uw), 0<h<3.

Proof. Let u = [ug,us,-..,un] be a )\-eigenvectér of W;l}’wi‘th A £ 0. Note that
fori >0, o . A

+ _

Since w, = 0 for all fn| > N and N < i <j, —i—2j < i —2j < =N, we hence
have w;; = 0 for all N < i < j. We now construct G as follows: let @n = up for all
0<mn<Nand define @,+1 inductively as '

n
(4.6) ’ 1 = %ngﬂ,k ix, n>N.

k=0
Then @ is the required vector. The last assertion follows from the fact that for
0<h<%,\11n(h)=0fora11n>N. C o , :

In [Sch] (see also [K], [RL]), L. Schwartz proved the following classical result on
mean periodic functions: Let p be a bounded regular Borel measure on R with compact
support. -Let C be the class of continuous functions on R equipped with the com-
pact opén topology. Suppose there exists a nonzero g € C that satisfies the convolution

equation

/oo g(z —y)du(y) =0 VzeR

-0

Then g belongs to the closed linear subspace spanned by

N m .
{e*0) :a € C,/ e **¥du(y) = 0}.
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Heuristically, the convolution equation implies that §(z)i(z) = 0 (in the distribution
sense). Since p has compact support, ji is an entire function and has only countably
many discrete zeros. It follows that the support of § must be contained in the zeros
of i, and g is of the form asserted. We need the discrete version, which is an easy
corollary of the above theorem: if {w,}32 _ ., is a given sequence with only finitely
many nonzero terms and if {z,}32 _ is any sequence satisfying

0 - ‘ ,
. Z Zp—pwr =0 YV ne€Z,
k=—00

then {z,}52 _ . belongs to the closed (with respect to the product topology) linear
subspace spanned by

{{e*"}:a€C, Z e~y = 0}.

LEMMA 4.5. Let i be a \-eigenvector of W with A# 0 or 2. Then

(®*®(R),4) #0  for some 0 <h < %

Proof. By Proposition 4.1, Lemma 4.4, and (4.5), we have for any v € S,
(4.7) « (= (h), v) —(\Il°°(2h),W+v) YheR

For any fixed h, ¥,(h) = 0 for all large n; hence (T (h), u) is* well deﬁned and is
continuous on h. Suppose the lemma i is false, i.e., S

(4.8) (\I!°°(h),ﬁ) =0 VO0<h< -21-

By (4.7), we have
IO ~ 1 oo + A g0 ~
0= (¥=(h),0) = E(‘I’ (2R), WTia) = '2—<‘I’ (2h)au>'
The assumption that X 0 implies that (¥°°(2h), ) =0forall 0 < h < 1, i.e., (4.8)
holds for all 0 < k < 1. Repeating the same argument, we have that (4. 8) holds for

all h > 0 and hence for all h € R\ {0} since ¥*°(—h) = ¥*°(h). By continuity, we
also have (¥°°(0), 1) = 0. We hence conclude that

S (f;f(h—k)+f*f(h+k)) ~0 VheR,
S C

where f(z) = f(-z). By letting o = 2Ug, T =T—n = fin for n >0, and by replacing
h with h+mn, 0 < h < 1, we can rewrite the above as_ o

Z Tn_kf * f(h+k) VnezZ, helo,l).

k=—o00
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Note that the autocorrelation function f * f is continuous and has compacf support.
For each fixed h € [0, 1), if we regard the sequence {f * f(h +n)} as the {wn} in the
above digression, then {z,}32 _., must be in the closed linear subspace spanned by

An={{e""}:aeC, > fxflh+ n)e~" = 0}.

n=—oQ

Since this is true for all h € [0,1), {z,}5%_o, must be in the closed linear subspace
spanned by ﬂhe[o,1) Ap. By using the Poisson summation formula ([Ch, p. 47]), we
have . '

C0m B e met

n=—oo

= i fla+2mn) f(~(a+ 2mn))ethla+2mn)

n=—oo

= e i f(a +2mn) F(~(a + 2mn))ei?™mh

n=-0o
for all h € [0,1). This impliesb that
fla+2mn)f(—(a+2m))=0 VneZ

'Observe that the Fourier transformation of (1.1) is F(2) = f(Z)mo(%), where mo(2) =

%deinz is a trigonometric polynomial of degree N. Let F(z) = f(2)f(-2),
Q(e**) = mg(z)mo(—2). Since F # 0 in a neighborhood of 0, we conclude from
0 = F(a) = F(£)Q(e*/?) that for some I, eie/2" must be a root of Q. Hence the
sequence {Z,}2 _, is in the close linear span of all the sequences of the form

(4.9) {{e*"} : e/ 2" is a root of Q(z) for some 1}.

Now, by a direct calculation,

o)
[W(éia’('))}n — Z wn_zkeiak — 22eian/2Q(eia/2)'

k=—o00
This implies that for some I,
(@10 | Wi{ea0)) = 9gie0/2 g(eie/2y =

On the other hand, in view of Lemma 4.4, the vector x = [.... ,z_l; Tg, 1, - - -] satisfies
Wx = Mx. This is a contradiction since {z,}3%_, is a combination of the sequences
{ei*"}2. _ . in (4.9), and (4.10) implies that x can not be an eigenvector.

Proof of Lemma 4.3. Suppose that u is an A-eigenvector of W3 with A # 0 or
2. By Lemma 4.4, there exists it € S such that W& = A and @n, = u, for all
0 < n < N. By Lemma 4.5, we have (& (h), i) # 0 for some 0 < h < 3. For such h,

(&N (h), u) = —(TV (h), u) (by (45))
— (T (h), &)
£ 0.
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5. The L*-Lipschitz exponent and asymptotics. For any § € C, we let
’ 1
B (h) = 725 2(h)-

LEMMA 5.1. Let A # 0,2 be an eigenvalue of W, let § = -—ln()\/2)/(21n2) (i.e.,
A/21728 = 1 and (3 takes the principal branch when )\ is complez), and let &t be the

correspondzng eigenvector. Then

(@8 (21),0) = (@O (h), 1) VO<h< %

Proof. Let ¢(h) = (®P)(h), d). By Proposition 4.1, we have for 0 < h < %,

(@) (h), &) = 735(B(R), )

21123 (zh)zﬂ@(zh) , W)

(‘I’(B) (2h), G).

= 91— 2;5

By the ch01ce of ﬂ, we have #(h) = ¢p(2h) for all 0 < h < £

Recall that if M is a matrix on a vector space V' thh characterxstlc polynomlal
p(z) = (x — M)% - (:c — Ax)% and minimal polynomial g(z) = (z — A)™ .-+ (z —
Ax)™, then V = Vi @ --- @ Vi, each V; has dimension ¢;, M is invariant on V;, and
(M~ \I)™V, =0 (m; is called the order of A; ) Moreover, according to the Jordan
decomposmon theorem,

Vi=Un @ @ Ui,

where each s;; ';= dimU,-j < m;, with at least one of the s;; = m;; each U;; is generated

(5.1) w=u up=M-ADy,..., u,, = (M= N a

and (M—\;I)*iu = 0 for some u. Note that the last vector in (5.1) is a \;-eigenvector
of M. '
~ Lemma 5.1 can be strengthened as follows.
THEOREM 5.2. Let A # 0,2 be an eigenvalue of W3; and let 8 = —In(A/2)/(21n2).
Suppose there ezists an m such that (W§ — )\I)m‘lu # 0, (W+ —AMI)™u = 0. Then

1
(5.2) (q><ﬂ>(h) u) = Z(lnh Ioe(R), 0< h < 5
where pr(h) = pr(2h) for all h > 0 and pm # 0. In partzcular, ifm =1, then
(@) (R), u) = p1(h).
Proof. Let ‘ o

U, =1u,..., g = (W§ =)™ lu
and let ¢r(h) = (2P (h),ur). Note that u; is a )\—elgenvector of W;. Hence by
Lemma 4.3, ¢1 # 0, and Lemma 5.1, :

1

pih)=pa(2h)  VO<h<g.
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Let g1 (h) ¢1 (h). For Wi Nuz = Au; + uy, by the same argument as in Lemma
5.1, we have . —

|  Ga(h) = 4a(2h) + §¢1(zh).
Let g2(h) = ¢2(h) + 22kg1 (k). Then

82(1) = g2(h) — s ar(b),

and for 0 < h < %,
‘ | 1 Inh

ga2(h) = ¢2(2h) + —¢1(h) + Y gl(ﬁ)

ln(2h)

Aln2

= ¢2(2h) +
= 92(2h).

Let gs(h) = ¢3(h) + 32 02(h) — %@gl (h). Then by a similar argument as
above, we have

N (2h)

ga(h) = gs(2h)  VO<h< .;:

Inductively, we can find g;, 1 < j < m, such that 9j (h) 9j (2h) for 0 < h <3 a.nd

' ' = (-1)7* i -1
. ¢.’l(h) = gj(h) + Z (] — k)' ()‘ ln2)J'—’° (H h1(2 h)) gk(h)'

For j = m, we group those terms with (In h)* together and denote the corresponding
coefficient by px(h). Then py satisfies the periodic condition, and py, (k) = ey (k) # 0.
If we extend py by pi(h) = pr(2h) to all h, the theorem follows.

Now, we define ' '

Amax = max{|\| : ) is an eigenvalue of W}; and |\| # 2}.

PROPOSITION 5.3. Suppose f is an L2-solution of (1.1). Then 2 S Amex < 2.
- Proof. We first claim that Apa.x < 2. Otherwise, let A be an eigenvalue with
|A| > 2 and let u be a corresponding eigenvector. By using Proposition 4.1, we have

<§> (5}%) ,u> = (-;‘-)m (®(h),u) VO<h< 1.

By Lemma 4.3, there exists 0 < A < 3 such that |(®(h),u)| # 0. Hence (B (), u)l
does not tend to zero as m — oo. This is a contradiction, and the claim follows.

If Amax < , then for any u in Theorem 5.2, the corresponding 3 satisfies Re 8 =
—ln(|A|/2)/(21n 2) > 1 and hence limsup;_,¢+ 7z|(®(h),u)| = 0. Since all such u
form a Jordan basis, it follows that ‘

Iimsup / JARF@)P dt = hmsup 3 (¢I>(h),eo) = 0.

This 1mp11es that suph>0 = [ ARSI < 00 so that f/ € L?(R) and f]f’]2 =
limp—o 7% [0 |Anf|2 = 0. This implies that f =0 a.e., a contradiction.
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.~ THEOREM 5.4. Suppose f is an L2-solution of the dilation equatzon (1.1). Let
o = —In(Apax / 2) / (21n2) and let m be the highest order of the eigenvalues A of w5
such that |A| = . Then . L

68 hhrg(W | iaws@pas - o)) =

“where p(h) is a nonzero bounded continuous multz'plz'catz've periodic function of period
2, i.e., p(h) = p(2h),h > 0.

Proof. Write eg = 3, byu;, where {u;} is a Jordan basis corresponding to the ma-
trix W;. Let A be the eigenvalues (there may be more than one) such that |A| = Amax
and has thhest order m. By Theorem 5.2 and the choice of a, the terms [(®(h), u;)|
of the form h22|In h|™ 1p(h) dominate (®(h), eo) as h — 0F; the corresponding coef-
ficient b;’s are not all zero since |[(®(h),eo)| = c| (®(h), u;)| for some ¢ > 0. We hence
have

[ 1ans@)Pds = (@(h), o) = |1 hmp(h) + 6(1),
where p(h) = p(2h) and limp,_,o+ 8(h)/ (h2°‘| Inh|™"1) =0, and the theorem follows.
COROLLARY 5.5. Suppose X is an eigenvalue of W} such that |A| = Amax = 3

and X has order 1. Then A\ = %, f is differentiable a.e., and f € L?(R).
Proof. Let 8= —1n()\/2)/ (2 In2) =1+10 and let u be the A-eigenvector. Then

7 /_w |Anf(2)Pdw = hi%(BA(h), u) + o(h)

= h*%p(h) + o(h),

where o(h) —0ash— 0 and p is bounded and p(h) = p(2h). It is well known that
if suppso7z [ oo |ARSf(7)|?dz is bounded, then f’ exists a.e., f' € L3(R), and

1 : o
Jm 2 [ ans@Pe= [ 7@
-—00 .
This implies that limy,_,o+ h*2%p(h) exists. In view of periodicity, we have 6 = 0 and
p(h) = C, and the corollary follows.
COROLLARY 5.6. Let f,c, and m be as in Theorem 5.4. Then

1 / o
SUp ——5o fWw)|[“dw < oo.
n>0 nm 12 2na 2"‘17r<|w|<2"1r | ( )l -

Proof By using the Plancherel Theorem we have

(h) W/ ]Ahf(:r)|2d:1: -‘ )’
C
mﬂr f |F(w)|? sin?(hw/2)dw

Cz / 2
Z ——e e f w)|“dw.
h2a| ]_nhlm—l '2’1';.<_|w|<%'; I ( )l

Since ¢(h) is bounded by Theorem 5.4, the result follows by taking h = 277.
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We remark that the above corollary implies that for any r < @, f is in the Bosov
space By™ in the sense used in [CD, Thm. 3.3]. It also implies that f_ |l f(w)[Pdw < .
oo for r < a, which is proven in [V]. By using the same technique as in [CD Thm. 5. 1],

we can improve a pointwise estimate of f (w) presented there.
COROLLARY 5.7. Let f,a, and m be as in Theorem 5.4 and assume that ) conp =

ECZn-i-l = 1. Then

o Cla(+ w])m-Drz
Wl s ==a

Proof. For w € [2»~1m,2%7],n > 1, the assumption on the coefficients implies
that f(2kn) = 0 [Ch]. Hence ' : .

. FreV12
fors | AT 4

an-tnglgl<one €

< Czn(m—l)/Zz—na

Ca(In(1 + |w]))m-D/2
T+whe

1/2

<

We define the L2-Lipschitz ezponent of a function g € L?(R) as
, } e _
(5.4) = L*Lip(g) =inf{8>0: 0 < limsup - / |Ahg(t)|2 dt}.

Note that 0 < limsupy,_,o+ 37 f_ |Arg(t)|? dt (otherwise; we can derive a contra-
diction by using the argument in the last paragraph of Proposition 5.3 to show that
g=0a.e.). Hence 0 < a < 1. Also,

0 iff<a,

1 [ |
hmsup 73 / |Ang(t)|? dt = { o iff>a.

h—0+

The next corollary follows directly from Theorem 5.4.

COROLLARY 5.8. Suppose f is an L2-solution of the dilation equation (1.1). Let
a = —In(Amax/2)/(21n2). Then 0 < a <1 is the L2(R)-Lipschitz exponent of f.

Corollaries 5.6 and 5.7 give certain estimates of the Fourier transform of f. In
the following we consider yet another sharper estimate on the average of the Fourier
transformation of the L2-scaling function. We make use of a special form of Tauberian
theorem to convert the asymptotic result in Theorem 5.4 into the frequency domain.
For 8,7 € R, let

We,y = {g : g loc. Riem. integ. on RY, > sup t?|Int|"|g(t)| < 00} .

k=—oo 2,’: 5t<2k+1

The following theorem is proven in [L3, Cor. 4.5].
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THEOREM 5.9. Suppose F' > 0 is measurable on R* and is bounded on [0,a) for
some a > 0. Let g € Wp,(RY), > 0,7 2 0 be such that G(§) = I g(t)tﬁ 14+i€qy £
0 for all . Then

-T1;_{2°<Tﬂl 7 / F(t)g( )dt—P(T))

if and only if

. CT ‘ ,
Jim (‘fﬁ('li_ﬂ? /0 F(t)dt"—Q(T)) —0,

where P and @ are bounded multzplzcatwe periodic functzons of the same period and
P #£0 if and only FQ#O0.

- THEOREM 5.10. Suppose f is the L2-solutzon of (1.1) with L2-szschztz exponent
o # 1. Let m be the highest order of the eigenvalues \“such that |A\| = Amax. Then
for any's such that a < s, there ezists a bounded contmuous multzplzcatzve periodic

function q such that ¢(T) = ¢(2T) and

! e [ R OPE o) ) =
760 T2(s~) (InT)™—1 J_p° q =

Proof. By using the Phancherel Theorem as in Corollary 5.6,

1
o) = g [ )P o2
| 1 s 2sm2(hw/2)
h2<a-s>|1nh|m1/ et .
Bylettihg'i |
sin?(w/2)

" ~ . R 1 A 1
Flo) =l f@)P + W f-0f, o) = Z08=, k=g,
the above reduc;es to

Let 8 = 2(s — @). Then g € Wa m—1. Indeed, for 0 < o <1,

=% S
Csup Pllnw|™ g(w)
o 2k Sw<2kH
oo .9
= Z sup |1nw|m"]j_§1£.§_ui_2.
ke oo ok Sw<2k+1' |

) oo '
<C (Z lklm-—12—2k(1—a) + Z lk'm—lz—Zak) < 00.

k=0 . k=0

k=—

wza
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- Also note that for a < s, g is integrable and

; oo ) . oo v "t .
G(¢) = / g(w)wHe—e) =1+ g, — / sin?(w/2)w* 2 1dw
0 0

- (5.5) .
___ VAl(-a+¥)

4+1-F)P(q + 1 — %)

for all £ (where F(§) is the gamma function which has no zero and has simple poles at

& =0,—1,-2,...; the calculation is by Mathematica). Hence the conditions of g in

Theorem 5.9 are fulﬁlled Together with Theorem 5.4, there exists a nonzero g such
that ¢(2T") = ¢(T") for all T and -

lim ( 1 /T lw® f(w)|2dw — (T)) =
T oo T2(s—a)(1 T)m— T q -

#0

6. Higher-order _L’-Lipschitz exponent. In this sectioﬁ, we consider the
higher-order difference so that the Lipschitz exponent is allowed to be greater than 1.
For any interger | > 0, we define the /th-order difference of a function g € L?(R) by

!
AP =3 (1) fe—wn
and the L?- Llpschltz exponent of g by

(6.1) o := L?-Lip(g) = inf {ﬂ >0:0< llmsupﬁzﬁ/ |A(l) (t)lzdt}

It is well known that 0 < o < I. For 0 < a < 1, the definition used in (5.4) coincides
with new definition here, but for = 1, the two definitions may or may not be the
same. We will clarify this situation in the following. Furthermore, we show that the as-
ymptotic properties in the last section are also preserved for higher-order cases.

For simplicity, we only consider the case [ = 2. Let f be the L2-solution of (1.1),
let : .

&.(h) = [_oo AP f(z + n)AP f(z)dz

and let ®(R) = [@o(h), ®1(h),. .., 2N (R)]-
LEMMA 6.1. Suppose f is the L2-solution of (1.1). Then for any u € CN*¥1,

62 (@@ =0(a0) - je0n.u).
~ Proof. Let u € CN+1. Then |

(®@(h),u Z Un / A(z)f(a: + n)A(Z)f(as)da:

n=0

n=0.

=C Z Up / f(w)|?e™ sm4(hw)dw
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- CZ U / )2 (s1n2(hw) 21 s1n2(2hw))

n=0
= C(B(h) - i§(2h), u.
5.2. Let A be an eigenvalue of Wi, A # 0 or 2.
(i) Let u be a A-eigenvector. Then. o

Z0 ifA£3 —

| (‘i)(h)’u){ =0 ifr=3

(ii) Suppose A= 1 has order m > 1, and let u be such that (W"' D)™ lu 0.
Then : ‘ . . ,
63 (B (1), u) = () (in hY™"2h + 6(R),

where P is a nonzero bounded continuous functzon with p(h) = 5(2h) and 6(h) has
order smaller than (In h)™ 2h2. ,
Proof. (i) Note that for 8 = —1In(A/2)/(21n2), Lemma 5.1 implies that

(®(h),u) = p(R)h*?

for some nonzero bounded continuous p such that p(h) = p(2h). Hence by (6.2),

_ e - ,
(6.4 @, = (1- ) thn,
and the result follows. ‘ . .

(ii) Theorem 5.2 implies that (<I>(h), u) has order (Inh)™ !p(h)h? as b — 0,

and 1(<I>(2h,), u) has order 1(In2h)™1p(2h)(2h)? = (In2h)™"* p(h)h?. Note that
(In h)m“ — (In2R)™1 is of order (Inh)™~2. Consequently, ~ .

(®(1),0) = (B(8) = 1B(2H), ) = 5(R)(1nR)™2"+ 6,

~ where P and 8(h) is as asserted (the order of 6(h) follows from the same argument

and Theorem 5.2).
By using Lemma 6.2(i), we can extend Corollary 5.8 as follows.
PROPOSITION 6.3. Suppose f is an Lz-solutzon of (1. 1) ‘Then the Lz-szschztz

e:iponent of f is given by

(6.5) 0 < a=—In(Anx/2)/(2In2) < 2,
where

Aay :=max { |N|: N eigenvalue of W and |X'| < 1
N 2
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if % is an eigenvalue of order 1 and is the only eigenvalue of modulus %;
Amax = Amax

otherwise.

In the first case, f is differentiable a.e. and f’ € L2(R) (see the proof of Corol-
lary 5.5), and f has Lipschitz exponent > 1. In the other case, the new a.nd old
definitions coincide.

" The corresponding extension for Theorem 5. 4 is the following.

THEOR.EM 6.4. For the above a, let m be the hzghest order among those A\ such
that [\ = . Then :

(66) |Jlm (W / lA(z)f(:v)[zdx p(h)>_o

exzcept for the special case where A= 5 and the order m is stmctly greater then the
other eigenvalues of moduli % 5; in such a case, a =1 and

- (6.6) - lim (Wn—lh_lrf A2 £ (z)[Pde — P(h)).—o

h—0+

For the Fourier asymptotic result corresponding to Theorem 5.10, we note that

G = TR /- A0 @) de

Wﬁl‘hl_m:-_ / lf(w)l2 s1n4(——)dw
By taking
_ sin*(w/2)
g(w) =

and observing that for a < s, g is integrable and
: 0 o0
G(f) — / g(w)w2(3‘°‘)‘1+"5dw-= / sin4(w/2)wi5"2°"1dw
0 Jo .

_ VAR - hcat §)
= 4(a+1—i§)r(a + % — %{)

for all £ (compare this with (5.5)), we have the following.
THEOREM 6.5. Under the same hypotheses as in Theorem 6.4, for a < s, e:ccept
for the special case, :

a1 1 iy 2dw‘Tv—
(6.7) Jim | g | s —oT) | =

for some nonzero bounded continuous q (depending on s) such that q(2T) = ¢(T). For
the special case, we have

, : 1 T s )
(6.7) hm <T2<s -D|InT|m-2 /_T v f(w)'2dw—Q(T)> )
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For the third-order difference Aff) f, we can use °

sinz = —1—§sm T -:-)’-sm22:c+ —1-sm 3z
16 8 16

to replace the relationship in (6.2). For elgenvalues A= 5 or % and the order m is

as in the special case in Theorem 6.4 (the corresponding « are 1 and 2, respectively),
the logarithmic terms in the asymptotic formulas are of order m — 2. For the other
cases, they are m — 1. The higher-order difference A( ) f behaves the same way. .

As an example, we consider Daubechies’s well—known scahng function Dy. Let f
be the solutlon of (1. 1) with coefficients gl

1+v3 : 1-v3

CO=

It follows from a direct calculation fhat'

2 0 0 O
' 9 1
wro| ® 1 -5 0
3 0 2 0 0
-1 3 9 _1
4 8 8”8
and the eigenvalues are 2, %, and Where 5 has order 2. It ﬁts 1nto the above

special case. By Theorem 5.4, o =1 and
e [ 18 f@)da ~ p(h)
h’zllnh’l -0 § ‘ =P

as.h — 0%. ‘It is known that f is differentiable a.e. [D], [DL2], but the asymptotic
property implies that f’ ¢ L%(R). If we consider the second-order difference, then by
a direct calculatlon and makmg use of the express1ons in Theorem 5.2. and (6 4), we
have = ‘ - : L

1

w12 @)z ~ 2000

as h— 0.

- For the Fourier transformatlon, we cannot apply Theorem 5. 10 since o = 1 but

we can use (6.7)’ derived from the higher-order difference. It implies that for 1 < s,
there exists a bounded continuous ¢ (depends on s) satisfying ¢(T) = q(2T) and

€ D =gy [P )

as T — o0. We include some gra,phrc 1llustrat1ons of this in the append1x

Appendrx For the four—coefﬁc1ent drlatron equatlon

f(x) Cof(2w) + clf(2x - 1) +¢2f (22 — 2) + caf (22 — 3)

with ¢g +c2 = 1, ¢1 + ¢3 = 1, we use ¢y and c3 as independent parameters to plot the
various regions and functions.
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FIG.‘ 1.

In Figure 1, the region bounded: by the thicker curve corréspondmg to those
(co,c3) where all eigenvalues of W are less than or equal to 2 (2 is simple except at
(co,e3) = (1,1)). This is the exact region where the L2-solut10n exists [LWl]

~The circular curve
1\? 1\?
(2-3) +(-3)

is the circle of orthogonality [La). The wavelet genera.ted by the correspondmg scahng

function is orthonormal.
- The triangular region is an approximation where the joint spectral ra.dJus of To

and T; restricted on H are less than 1 and the continuous solutions exist [DL1], [CH].
The ellipse is given by

1
2

cﬁ+c§_ —63+CQC3=0,

out51de which no L-solution exists [HJ.

Figure 2(a) is the graph of the L-Lipschitz exponent’ o = — In(Amax/2) / (2In2).

Figure 2(b) is the graph of o on the circle of orthogonality, plotted m terms of
the angles. Note that Dy is the smoothest one on the circle.

Figure 3(a) is the graph of the L?-Lipschitz exponent o = — ln(Amax /2) / (21n2),
using the second-order difference.

Figure 3(b) is the cross-section of co +c3 = 1 Figure 3(c) is the cross-section of
Co = C3.

Figure 4(a) is the Daubechies scaling function f = Dj.

Figure 4(b) is its Fourier transformation f(w).

Figures 4(c), 4(e), and 4(g) are w°f(w) with s = 1.5,1.25, 1 00, respectlvely, and

Flgures 4(d) and 4(f) are the correspondlng averages w(T) ’_:.T(.,TT f T lw’ fw)|2dw.
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Lip.exp.

N
DAY
Srahat
P \\\\\\
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P I B S
-135-105 -75 -45 -15 15 45 75 105 135 165 195 225
Angle w.r.t center (.5,.5) [degs]

(b)

Fic. 2.

Note that the 9(T) are approximately multiplicative periodic as T — oo. They
follows from (6.5). We cannot draw such conclusions from the theorem for s =a =1

(see Figure 4(h)). However, if we take ¥(T) = i'ﬁlﬁ"ffT |w f.(w)lzdcu, then it looks
multiplicative periodic as in Figure 4(i); we have no proof for that yet.

Acknowledgménts.‘ The graphs in the apper}dix»are due to Mr. Wonkoo Kim,
to whom we express our deep gratitude.”
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